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Abstract: In heterotic flux compactification with supersymmetry, three different connec-

tions with torsion appear naturally, all in the form ω + aH. Supersymmetry condition

carries a = −1, the Dirac operator has a = −1/3, and higher order term in the effective

action involves a = 1. With a view toward the gauge sector, we explore the geometry

with such torsions. After reviewing the supersymmetry constraints and finding a relation

between the scalar curvature and the flux, we derive the squared form of the zero mode

equations for gauge fermions. With dH = 0, the operator has a positive potential term,

and the mass of the unbroken gauge sector appears formally positive definite. However,

this apparent contradiction is avoided by a no-go theorem that the compactification with

H 6= 0 and dH = 0 is necessarily singular, and the formal positivity is invalid. With

dH 6= 0, smooth compactification becomes possible. We show that, at least near smooth

supersymmetric solution, the size of H2 should be comparable to that of dH and the con-

sistent truncation of the action has to keep α′R2 term. A warp factor equation of motion

is rewritten with α′R2 contribution included precisely, and some limits are considered.
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1. Introduction

Flux compactification of superstring theory has emerged as a new and promising framework

for bridging the gap between string theory and the real world. A large number of supersym-

metric and non-supersymmetric vacua are deemed to exist for generic compactifications to

four dimensions [1 – 4], and with much reduced number of moduli fields [5, 6]. A prototype

of flux compactification was first studied by Becker and Becker [7] in a warped Calabi-Yau

compactification scenario in M-theory. A similarly simple form of flux compactification was

found and explored in depth in IIB theory [8, 9], where a large class of solutions were found

to be also warped Calabi-Yau compactifications. This model simulates Randall-Sundrum

geometry [11] as a bona-fide string theory solution, and has lead to a number of interesting

low energy physics [12].

One step away from the warped Calabi-Yau examples, the analysis becomes quite

involved. Often the structure of compact manifold is beyond the reach of familiar tech-

niques. Typically the manifold is not even Kähler and the complex structure could be

non-integrable [13]. Recent progress in understanding of generalized complex geometry
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and generalized Calabi-Yau geometry [14 – 20] will hopefully provide effective tools. How-

ever, many properties of the manifold, in particular global properties including topological

aspects, remain inaccessible.

Another common difficulty lies in that the compact manifold with flux is singular at

leading supergravity level. This follows from an argument of Maldacena and Nuñez [21].

This is not necessarily a big disadvantage in type II theories, since the singularity necessary

for unbroken supersymmetry would be orientifold planes. We know how to treat these

locally in the weak coupling limit. This is in contrast to heterotic theory or M-theory,

where we do not have a weak coupling description of such singularity. Fortunately however,

the heterotic theory behaves somewhat differently. For one thing, the anomaly condition

for H has to involve interaction terms of α′R2 order for consistency [22], and thus opens up

a possibility that we must consider higher derivative interactions at least in some limited

sense [23].

Heterotic flux compactification was first studied by Strominger some twenty years

ago [24]. While the geometry turns out to be non-Kähler, the relation between H and the

complex structure is tightly constrained by the supersymmetry, and one has a reasonably

concrete geometric characterization. Heterotic examples would be very attractive in part

because of its potentially very rich gauge structure. Some limited subfamily may be an-

alyzed via U-duality to F-theory configurations [5, 25, 26], but study of gauge sector in

heterotic flux compactification remains largely unaddressed.1 From supergravity approach,

the conventional tools involve either solving for explicitly spinor zero modes or counting

index of some Dirac operator, in order to establish low energy gauge sector. With N = 1

supersymmetry in four dimensions, this can address in principle the symmetry breaking

pattern and the surviving four-dimensional gauge symmetry, the charge matter field con-

tent thereof, and also moduli fields associated with the gauge bundle over the compact

directions.

With flux, however, adapting these tools finds difficulties. Even what used to be a

trivial task of isolating the zero mode responsible for four-dimensional gaugino, is non-

trivial if we take a direct approach by considering the zero mode equation. Our aim here

in part is to point out some of such problems, and characterize them. One issue is whether

and when the no-go theorem of Maldacena-Nuñez type is effective and when it is not.

This issue is more important in heterotic theories because, unlike the case of type IIB, the

gauge sector arises from bulk. Reading-off low energy spectrum will depend on details of

singularities on the manifold.

Section 2 explains the supersymmetry constraints of Strominger, and the relations

among flux, torsion, complex structures and dilaton. From these we find a simple relation

between the Ricci scalar curvature and the flux. Section 3 concentrates on Dirac operators

whose zero mode solutions generate four-dimensional gaugino and matter fermions. The

squared Dirac operators are computed and found to contain spin-dependent potentials in

general. In section 4, we employ a simplifying assumption of dH = 0, which further reduces

1Recently a compactification with N = 1 supersymmetry with flux was offered by Yau and collabora-

tors [27, 28], where the internal geometry is a T 2 fibered over a conformally deformed K3 and completely

smooth.
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the torsion-dependent part of the potential to be spin-independent and positive definite.

Naively this would suggest that four-dimensional gauge sector is absent. However, dH = 0

and H 6= 0 automatically implies a singular internal manifold, so that the gauge sector is

closely tied to the singularity of the internal manifold in case of minimal embedding. In

section 5, we abandon the dH = 0 condition and explore a general equation of motion. In

particular, we show that a consistent truncation of the low energy effective action must

keep α′R2 term, which is sometimes ignored on account of α′ expansion. In the process,

we isolate the equation of motion which replaces the one responsible for the no-go theorem

of dH = 0 case, in a relatively simple form. This naturally leads us to hope for smooth

internal manifold for generic supersymmetric flux compactifications, in contrast to the

type II counterparts. In the appendices, we list our convention, collect supersymmetry

conditions and its known consequence, and also derive a couple identities used in the main

part of the paper. In the last appendix, we comment on Atiyah-Singer index densities for

smooth manifolds with torsion.

2. Flux, torsion, and curvatures

Let us first review the supersymmetric flux compactification of heterotic strings on six-

manifold M6. Assuming no gaugino condensates [29],2 Strominger obtained a set of su-

persymmetric conditions on the metric, dilaton, and the Kalb-Ramond field B. Here we

summarize this set of conditions and obtain further useful identities one can derive from

this system.

To set our convention, let us start with the bosonic part of the supergravity/super-

Yang-Mills action in ten dimensions:3

L =
1

4

√
−G e−2Φ

[
R(ω) − 1

3
HMNP HMNP + 4(∇MΦ)2

− α′
{

tr(FMNFMN ) − tr(RMN (ω+)RMN (ω+))
}]

,

(2.1)

This can be obtained from Bergshoeff et.al. [23] via the following map

φ−3
∣∣
BdR

= e−2Φ , HMNP

∣∣
BdR

=

√
2

3
HMNP ,

ωM
AB

∣∣
BdR

= −ωM
AB , λ

∣∣
BdR

=
√

2λ .

(2.2)

Normalization of gravity multiplet is slightly different from the usual one, which can be

adjusted by resuscitating ten-dimensional gravitational constant and Yang-Mills coupling

constant.

Supersymmetry implies existence of a spinor on the six-manifold M6 which solves

δψM = ∇(−)
M ε = 0 , (2.3)

2See refs. [30 – 32] for compactification with both fermion condensates and flux.
3Our convention is closest to that of ref. [33]. The only difference is in the definition of the dilaton.
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where ∇(−)
M is a covariant derivative with a torsionful connection. The metric in string

frame has no warp factor,

GMN dxMdxN = ηµν dxµdxν + gmn dymdyn (2.4)

with a metric gmn on the compact manifold M6. We assign ω to the spin connection of

gmn. The torsionful connection is defined in terms of ω shifted by H such as

ω±M
AB = ωM

AB ± HM
AB . (2.5)

The covariant derivative ∇(−)
M is defined with respect to the spin connection ω−. The

Einstein frame metric differs from the string frame one by a factor of dilaton,

GE
MN dxMdxN = e−Φ/2

(
ηµν dxµdxν + gmn dymdyn

)
(2.6)

so the physically relevant warp factor is e−Φ/2.

From a bilinear of ε, one constructs an almost complex structure Jmn, with respect to

which the metric gmn is hermitian. Vanishing of dilatino variation, δλ = 0, demands that

the Nijenhuis tensor vanishes;

0 = Nmn
p = Jm

q∇[qJn]
p − Jn

q∇[qJm]
p , (2.7)

where we wrote the covariant derivative in place of the ordinary derivatives. Furthermore,

the supersymmetry condition (2.3) implies that J is covariantly constant with respect to

the torsionful connection

∇(−)
m Jnp = 0 . (2.8)

This generalizes Kähler conditions. Furthermore, an integrability condition from super-

symmetry variations implies a vanishing Ricci two-form

Rab
mn(ω−)Jab = 0 (2.9)

with the curvature associated with ω−. This condition implies an SU(3)-structure on the

internal manifold M6, and would have implied a Ricci flat condition if there were no

torsion.

These conditions relate the complex structure J , the dilaton Φ, and the antisymmetric

tensor H. First, H can be identified with the so-called Bismut torsion [34]

Hmnp =
3

2
Jm

qJn
rJp

s∇[qJrs] (2.10)

and the dilaton is related to J as

∇mΦ =
3

4
Jnp∇[mJnp] . (2.11)

The relation between dilaton and H can be also read off from the above,

∇mΦ = −1

2
JmnJpqH

npq (2.12)
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and tells us that the non-primitive part of H is fully encoded in dΦ.

Recall that a p-form on d-dimensional background is primitive [35] with respect to an

integrable complex structure J , if it belongs to a spin |(d/2 − p)/2| representation under

an SU(2)J algebra whose three operators are

L+ = J∧
L− = Jy

L3 =
(p − d/2)

2
.

(2.13)

For p ≤ d/2, thus, a p-form is primitive if and only if it is annihilated by the lowering

operator, that is to say, the contraction with J is null. Decomposing H into irreducible

representations under SU(2)J , we find

Hmnp = H0
mnp +

3

2
J[mnJp]

q∇qΦ , (2.14)

where H0 has a null contraction with J .

The integrability condition (2.9) would have implied Ricci flat condition when H = 0.

With the torsion, it will instead express the Ricci scalar in term of H and Φ. For this, let

us contract equation (2.9) with one more J ,

0 = Rabmn(ω−)JabJmn . (2.15)

We reorganize the right hand side as

3Rp[qmn](ω−)JpqJmn −
{
Rpmnq(ω−) + Rpnqm(ω−)

}
JpqJmn . (2.16)

Since the spin connection ω− preserves the complex structure, the latter two pieces both

produce a Ricci scalar

−
{
Rpmnq(ω−) + Rpnqm(ω−)

}
JpqJmn = 2R(ω−) = 2

{
R(ω) − HmnpH

mnp
}

, (2.17)

where in the last step we invoked

Rpq
mn(ω−) = Rpq

mn(ω) − 2∇[mHpq
n] + 2Hp

r[mHrq
n] . (2.18)

On the other hand, Rp[qmn](ω−) is entirely made of the torsion part, since Rp[qmn](ω) = 0.

After some tedious computation,4 we find that (2.15) can be simplified to (up to an overall

factor of 2)

0 = R(ω) +
1

3
HmnpH

mnp + 6∇m∇mΦ − 8(∇mΦ∇mΦ) . (2.19)

Later we will use this type of equations to constrain smooth compactifications with flux.

As an easy example, let us note that this last equation alone can be used to show that

a simple toroidal compactification is impossible unless H = 0. For this, note that

0 = e−4Φ/3R(ω) +
1

3
e−4Φ/3HmnpH

mnp − 9

2
∇2

me−4Φ/3 , (2.20)

4See appendix B.3.
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which, with R(ω) = 0, implies

∫

M6

e−4Φ/3HmnpH
mnp = 0 , (2.21)

because the last term is a total derivative and integrates to zero. Thus, smooth supersym-

metric compactification on a Ricci flat manifold necessarily implies H = 0. We will come

back to this type of vanishing arguments time and again in various contexts.

3. Zero mode equations for 4D gauge sector

Generally speaking, the simplest way of approaching the gauge sector is to look at gaugino.

With N = 1 supersymmetry unbroken, the low energy spectrum gauge fermions should en-

code all information about massless gauge sector, namely unbroken gauge groups, charged

matter contents, and the moduli associated with the gauge bundles. In smooth compactifi-

cations without flux, and in some orbifold examples, the index theorem for Dirac operators

are powerful tools in analyzing fermion sector and, due to the supersymmetry, their bosonic

partners [10].

With flux compactification, all kind of new problems show up. In the absence of

flux, the zero mode underlying the four-dimensional gaugino field would be identified with

the internal part of the supersymmetry parameter ε. With flux, however, this simple

construction seems no longer possible. ε is a covariantly constant spinor with respect to

ω− = ω − H, yet the connection that appears in the Dirac equation is ω̂ = ω − H/3, as

we will see shortly. While ω− reemerges in the squared form of the Dirac operator, it is

still true that ε cannot solve the zero mode equation for the four-dimensional gaugino field

unless the torsion vanishes identically. With N = 1 supersymmetry unbroken, there should

be exactly one zero mode responsible for the four-dimensional gaugino, yet the relevant

equation does not tell us this immediately.

In this section we will study the zero mode equation from ten-dimensional gauge sector,

in the hope that it will shed some further light on flux compactification in the heterotic

theories. The full gaugino equation of motion is quite involved

0 = /Dχ − 1

12
HMNP ΓMNP χ

−∇MΦΓMχ + 3ΓMΓNP FNP

(
ψM +

2

3
ΓMλ

)
.

(3.1)

However, rescaling the gaugino field by eΦ, and then decomposing the gaugino to zero

mode χ0 along the compact M6 and four-dimensional gaugino Ψ

χ ∼ eΦχ0 ⊗ Ψ , (3.2)

we have a simplified zero mode equation along M6

0 = /D(ω,A)χ0 − 1

12
HmnpΓ

mnpχ0 + 3ΓmΓnpFnp(· · · ) . (3.3)
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Incorporating the H-term into the definition of the covariant derivative, we find that the

relevant torsionful connection in this Dirac equation is

ω̂ = ω − 1

3
H . (3.4)

Then, we have

0 = /D(ω̂, A)χ0 + 3ΓmΓnpFnp(· · · ) . (3.5)

The gauge field Am in the Dirac operator acts on χ0 as an adjoint representation of the

ten-dimensional gauge group, while its field strength Fmn should match its gauge index

with that of χ0. Note that the inhomogeneous term in the Dirac equation above involves

Fnp, the background field strength of the gauge bundle on M6. The ten-dimensional gauge

group is expected to be broken to satisfy this Bianchi identity for H, which forces an

non-trivial gauge bundle. We decompose the gauge algebra as

G = F ⊕ F⊥ , (3.6)

where Fnp takes value in the subalgebra F . The unbroken gauge algebra H is the part of

F⊥ that commutes with F ,

F⊥ = H⊕Q , [H,F ] = 0 . (3.7)

The leftover piece Q may be expressed as representations under F⊕H. Under the above de-

composition of the ten-dimensional gauge algebra, the low energy gauge group is generated

from H while the charged matter sector resides in Q.

Since fermions of low energy gauge sectors resides in F⊥ which is orthogonal to Fnp

in the background, we may drop the inhomogeneous terms linear in gravitino and dilatino

fields,5 and we recover a familiar-looking Dirac operators for low energy gauge sector.

0 = /D(ω̂, A)χ0
H⊕Q . (3.8)

Furthermore, since H commutes with F , the gaugino zero mode equation does not see the

gauge bundle at all, and is the simplest,

0 = /D(ω̂)χ0
H . (3.9)

Massless charged matter fermions would be orthogonal to F but not necessarily commute

with it, so we have

0 = /D(ω̂, AQ)χ0
Q , (3.10)

where we put the subscript Q on the background gauge field Am to emphasize that it is in

the representation Q under F . Its field strength will be similarly denoted as FQ
mn.

Note that ω̂ is neither ω− nor ω+. The torsion part ω̂ differs from that of ω− by the

factor 1/3, which may look somewhat strange. This factor 1/3 becomes more palatable

once we evaluate /D2

∆H ≡ −[ /D(ω̂)]2 , ∆Q ≡ −[ /D(ω̂, AQ)]2 . (3.11)

5They would be important for moduli counting, however.
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We have

∆H = −ΓmDm(ω̂)ΓnDn(ω̂) = − 1√
g

Dm(ω−) gmn√g Dn(ω−) + V , (3.12)

with the potential V

V =
1

4

{
R(ω) − 1

3
HmnpH

mnp +
1

12
(dH)mnpqΓ

mnpq
}

. (3.13)

When commuting Γn through Dm(ω̂), one obtains terms linear in Dm(ω̂). Of these, the

piece with Christoffel connection conspires to generate the explicit metric factors in the

D(ω̂)2 piece, while the torsion-piece is absorbed into D2 piece by shifting Dm(ω̂) into

Dm(ω−) and completing a square.

The first term, D2 type, is a Laplace operator on the (Lie-algebra-valued) spinor

bundle, so we may as well write

∆H = −[ /D(ω̂)]2 = ∇m(ω−)†∇m(ω−) + V (3.14)

provided that the manifold is smooth and compact. Similarly, we have

∆Q = −[ /D(ω̂, AQ)]2 = ∇m(ω−, AQ)†∇m(ω−, AQ) + V +
i

2
FQ

mnΓmn . (3.15)

While we started with the torsion of the amount −H/3, the zero mode equation solves a

Laplace-type equation (with a potential) with torsion −H instead [36]. Interestingly, the

covariant derivative with torsion −H is precisely the one that appears in supersymmetry

condition.

4. dH = 0 or minimal embedding

Gauge sector of heterotic flux compactification remains relatively obscure. In the usual

compactification with H = 0, the Bianchi identity

dH = α′
[
tr{R(ω) ∧ R(ω)} − tr(F ∧ F )

]
, (4.1)

is solved by embedding the SU(3) spin connection to the gauge sector, thereby breaking

gauge group down to E6 × E8. With flux, the Bianchi identity is replaced by

dH = α′
[
tr{R(ω+) ∧ R(ω+)} − tr(F ∧ F )

]
, (4.2)

with respect to the SO(6)-valued curvature two-form R(ω+) [37]. Note that this curvature

two-form is made from the connection ω +H, whereas the SU(3)-structure of the manifold

is associated with ω − H.

A major hurdle in understanding flux compactification of the heterotic string theory

is to classify solutions to this twisted Bianchi identity. With H-flux, the nearest analog

of such a minimal embedding is to set dH = 0, by choosing the gauge bundle to have the

property

tr(F ∧ F ) = tr{R(ω+) ∧ R(ω+)} . (4.3)
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Further, the simplest way to do this is to use ω+ as the gauge connection again, which

makes dH = 0 even when H 6= 0 carries a topological flux. If one chooses to embed ω+ into

the gauge bundle, the gauge bundle will be of SO(6)-structure group. This would break the

gauge group to SO(10) × E8 for E8 × E8 heterotic theory, for instance. Concentrating on

the broken E8 part, the holonomy group and the unbroken gauge group are, respectively,

F = SO(6) , H = SO(10) . (4.4)

The matter fermions reside in Q consisting of representations,

(6,10) ⊕ (4,16) ⊕ (4,16) (4.5)

under SO(6)×SO(10). It is unclear to us if there is a solution with dH = 0 with F smaller

than SO(6).

In a background with dH = 0, the squared Dirac operator /D2 is simplified further as

the potential become spin-independent,

V =
1

4

(
R(ω) − 1

3
HmnpH

mnp

)
. (4.6)

For further reduction, recall that the analog of the vanishing Ricci two-form condition

relates R(ω) to H and derivatives of Φ as

R(ω) = −1

3
HmnpH

mnp − 6∇2
mΦ + 8(∇mΦ)2 . (4.7)

This is still cumbersome because of the second derivative of dilaton. Now, consider the

quantity J ∧ dH, and rewrite it as

J ∧ dH = e2Φd(e−2ΦJ ∧ H) − e2Φd(e−2ΦJ) ∧ H . (4.8)

From the form of H and Φ, we have

e2Φd(e−2ΦJ) = 2 ∗ H , (4.9)

while

e2Φd(e−2ΦJ ∧ H) = − ∗
(
∇2

mΦ − 2(∇mΦ)2
)

. (4.10)

Combining these results we finally have

∗(J ∧ dH) = −∇2
mΦ + 2(∇mΦ)2 − 1

3
HmnpH

mnp (4.11)

so that dH = 0 then implies that the right hand side vanishes. The two equations,

Rabmn(ω−)JabJmn = 0 and dH = 0, together produce a simpler formula for the Ricci

scalar,

R(ω) =
5

3
HmnpH

mnp − 4(∇mΦ)2 . (4.12)
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Then F -independent “potential term” in the squared Dirac operator becomes

1

4

(
R(ω) − 1

3
HmnpH

mnp

)
=

1

3
H0

mnpH
0mnp (4.13)

with the help of the decomposition of H into the primitive part H0 and the rest;

HmnpH
mnp = (H0

mnp)
2 + 3(∇mΦ)2 . (4.14)

Thus, the potential term of the operator − /D2 becomes

V =
1

3
H0

mnpH
0mnp , (4.15)

which is positive definite whenever H0, the primitive part of the torsion, is non-zero.

Zero mode equations are then,

[
∇m(ω−, AQ)†∇m(ω−, AQ) +

1

3
H0

mnpH
0mnp +

i

2
FmnΓmn

]
χ0
Q = 0 (4.16)

and [
∇m(ω−)†∇m(ω−) +

1

3
H0

mnpH
0mnp

]
χ0
H = 0 . (4.17)

Note that the latter operator is formally positive definite, as long as H0 /≡0. Ordinarily, the

last form of zero mode equation would show absence of massless gaugino in four dimensions,

and thus by supersymmetry no unbroken gauge group. Recall that a usual vanishing

theorem would have followed from

0 =

∫

M6

χ0
H

[
∇m(ω−)†∇m(ω−) +

1

3
H0

mnpH
0mnp

]
χ0
H

=

∫

M6

[∣∣∇m(ω−)χ0
H

∣∣2 +
1

3

∣∣H0
mnp

∣∣2∣∣χ0
H

∣∣2
] (4.18)

forcing χ0
H = 0. Owing to the supersymmetry, this would also imply that no unbroken

gauge sector exists.

However, this assertion must be false; in the constraints coming from the compacti-

fication nothing forces the bundle over M6 to be of maximal rank, and a priori, there is

no reason why H should be null. In fact, we expect exactly one zero mode solution to

the above zero mode equation of ∆H. To see the way out of this quandary, note that the

above argument is correct only if there is no obstruction to the integration by part into the

second line. It is well-known that in type II flux compactification the compact manifold

has to be singular, which can be attributed orientifold planes that carries a negative RR

charge and a negative tension [8]. In the heterotic case, it must be that, when dH = 0,

something similar happens and the internal manifold becomes singular.

In fact, using the identity (4.11), one may argue for a no-go theorem. Recall that

∗(J ∧ dH) = 0 implies

0 = ∇2
mΦ − 2(∇mΦ)2 +

1

3
HmnpH

mnp , (4.19)
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which can be rewritten as

1

2
∇2

me−2Φ =
1

3
e−2Φ HmnpH

mnp . (4.20)

If there are no boundaries and no singularities in M6, we find that

1

3

∫

M6

e−2ΦHmnpH
mnp =

1

2

∫

M6

∇2
m e−2Φ = 0 (4.21)

forcing H = 0 and bringing us back to compactification without flux if the internal manifold

is assumed to be compact and smooth.

Therefore, there cannot be any regular compactification of heterotic string theory with

H 6= 0 and dH = 0 [38]. This is also related to the no-go theorem of Maldacena-Nuñez

type [21, 8]. In the latter, the existence of singularity can be seen from the equation of

motion for the warp factor; here, it so happens that the warp factor in Einstein frame

is precisely e−Φ/2. In what would have been the simplest scenario for heterotic theories,

things are more complicated. dH = 0 forces the gauge sector crucially to depend on

understanding of singularities in M6.

On the other hand, the detailed form of (4.17) is suggestive with its positive potential

term. For a large internal manifold, the zero mode is no longer uniform and localized

away from the region of large |H0|2. Also its behavior must be rather singular near the

singularity of the internal manifold. In view of interesting local physics found in type IIB

theories [8, 41], the precise form of this zero mode, including its behavior near singularities,

deserves further attention. We hope to come back to this problem later.

5. dH 6= 0 and smooth compactifications

As we saw above, what would have been the simplifying assumption of dH = 0, seems

to cause more trouble than otherwise. For the supergravity approach, one is thus lead

to more generic configurations with non-minimal background with dH 6= 0. Recently an

example of smooth compactification was proposed by the authors of ref. [27, 28], where

indeed all examples were non-minimal. In this section, we will consider precisely what

equation replaces (4.20) and how the usual no-go theorem is avoided in heterotic theories.

Recall that Maldacena-Nuñez type argument would be difficult to evade if we stick to an

Einstein gravity coupled to a quadratic action of tensor fields. Thus, it has something to

do with what truncation of the effective action we are allowed to use in the presence of

such a flux that size of dH is not ignorable compared to that of H2.6

In order to justify the low energy description, the size of compact manifold, must be

substantially larger than
√

α′, so that expansion in α′ is justifiable. Let L be the linear

size of the internal manifold M6, such that

α′

L2
¿ 1 . (5.1)

6For recent discussions of higher order α′ correction, see ref. [39, 40] also.

– 11 –



J
H
E
P
0
7
(
2
0
0
6
)
0
3
0

In the conventional supergravity approach, one takes the Lagrangian (2.1) but keeps only up

to F 2 term, and argue R2 terms is of higher order. For actual supersymmetric solutions,

however, this is somewhat misleading, since on-shell values of Ricci scalar and H2 are

no larger than the higher order term, α′tr(R2). In fact, we know from general form of

supersymmetric solutions above that

H ∧ ∗H ∼ J ∧ dH ∼ α′J ∧
[
tr(F ∧ F ) − tr

{
R(ω) ∧ R(ω)

}]
(5.2)

and also that

J ∧
{
tr(F ∧ F ) − tr

{
R(ω) ∧ R(ω)

}}
∼ ∗

[
tr(FmnFmn) − tr

{
Rmn(ω)Rmn(ω)

}]
. (5.3)

From these, one should expect that generally7

Fmn ∼ 1

L2
∼ Ra

bmn(ω) , Hmnp ∼
√

α′

L2
∼ ∇mΦ , (5.4)

while the Ricci-tensor is of order ∇H and H2 and thus of order α′/L4

Rpm(ω) = Ra
bmn(ω)Ea

m ep
b ∼ α′

L4
. (5.5)

At least for supersymmetric configurations and also nearby non-supersymmetric ones, one

must keep R2 term in the Lagrangian for consistency. However, the difference between

Ra
bmn(ω) and Ra

bmn(ω+) is roughly of the order

∇H ∼ H2 ∼ α′

L4
(5.6)

and we may as well use the curvature without torsion Ra
bmn(ω) in the last term of (2.1),

instead of Ra
bmn(ω+), simplifying computations greatly.

The main message here is that for generic compactification with flux, one cannot drop

α′R2 piece from the action on account of α′ expansion. The only exception to this is the

case of dH = 0, and even in that case, the effect of R2 terms is cancelled by effect of F 2

term, rather than being subleading to the rest of terms.

With these in mind, let us consider how the equation (4.20) is related with equations of

motion. From the Lagrangian (2.1), one obtains a linear combination of the field equations

of the form

0 =

[
δ

δΦ
− 1

2
GMN δ

δGMN

] ∫
d10xL (5.7)

which gives

0 = ∇2
M e−2Φ − 2

3
e−2ΦHMNP HMNP

− α′e−2Φ
(
tr(FMNFMN ) − tr(RMNRMN )

)
+ · · ·

(5.8)

7Note that, upon restoring the overall gravitational constant 1/κ2
10 in front of the Lagrangian, H has

the dimension of mass, while F has dimension of mass squared.
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where the ellipsis denotes terms that came from variation of the Riemann tensor with

respect to the metric in the quartic term, RP
QMNδRP

QMN , and is proportional to

α′∇M∇N
(
e−2ΦRP

MPN

)
(5.9)

with an order 1 coefficient.

Using the supersymmetry condition on F and R, we have

tr(FmnFmn) = −2 ∗
(
J ∧ tr(F ∧ F )

)
(5.10)

and also up to leading non-vanishing order in α′/L2 that

tr(RmnRmn) = −2 ∗
(
J ∧ tr(R ∧ R)

)
. (5.11)

Therefore the above equation may be reorganized for supersymmetric background as

0 = ∇2
me−2Φ − 2

3
e−2ΦHmnpH

mnp − 2e−2Φ ∗ (J ∧ dH) + · · · (5.12)

up to the leading order in α′, with help of the Bianchi identity for H. The total derivative

term of the ellipsis drops out since the ordinary Ricci tensor Rmn = Rp
mpn is of order

α′/L4, so that

α′∇m∇n
(
e−2ΦRp

mpn

)
∼ (α′)2

L6
¿ α′

L4
∼ H2 . (5.13)

The ellipsis in (5.12) may be ignored as far as supersymmetric compactifications (and

nearby configurations) are concerned.

Then, dH = 0 again implies (4.20)

0 =
1

2
∇2

me−2Φ − 1

3
e−2ΦHmnpH

mnp . (5.14)

Note that this same equation was obtained in two ways; first, by rewriting J ∧ dH = 0

with help of supersymmetry conditions, and second, from equation of motion after imposing

(J∧dH) = 0. In the latter, the supersymmetry comes in when we exchanged tr|R|2−tr|F |2
in favor of ∗(J∧dH). This is exactly as it should, since supersymmetry implies the equation

of motion. Therefore, what replaces (4.20) in more general supersymmetric background is

the above combination of the field equation, which we may write more compactly as

∇2
me−2Φ = e−2Φ

[
4|H|2 + 2α′

(
tr|F |2 − tr|R|2

)]
, (5.15)

which is self-consistent and correct up to order α′/L4.

This clearly shows how the usual no-go theorem against smooth flux compactification

is evaded in heterotic theories via the higher curvature term. Also this reiterates the fact

that, in order to have a smooth flux compactification, it is necessary to have

tr|F |2 6= tr|R|2 (5.16)

and ∫

M6

e−2Φ
[
2|H|2 + α′tr|F |2

]
=

∫

M6

e−2Φ
[
α′tr|R|2

]
. (5.17)

Generically, both sides are of order α′L2.
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The equation (5.15) without R2 term has been used to argue that constant dilaton

background is necessarily torsion-free. With R2 absent, both H2 and F 2 are non-negative

so ∇Φ = 0 will force both H = 0 and F = 0. Once we have a non-trivial gauge bundle and

a non-trivial compact geometry, though, we cannot drop R2 term. Instead, ∇Φ = 0 would

enforce a local relation

2|H|2 + α′tr|F |2 = α′tr|R|2 (5.18)

everywhere on M6 with the primitivity condition J ∧ H (∼ ∗dΦ) = 0 also satisfied. A

priori, a torsionful compactification with constant Φ remains an interesting possibility to

pursue, although the local condition (5.18) may prove to be difficult to implement. In any

case, here, the potential V in the squared Dirac operator degenerates to another simple

form

V = −1

6
H0

mnpH
0mnp +

1

48

(
dH0

)
mnpq

Γmnpq , (5.19)

and we can see that the spin-independent part is now negative definite, in contrast to the

dH = 0 case.

Another interesting limit is when the primitive part of H vanishes, H0
mnp = 0, upon

which we have

|H|2 =
1

3!
HmnpH

mnp =
1

2
(∇mΦ)2 . (5.20)

With this the above equation is simplified to

∇2e−Φ = α′e−Φ
[
tr|F |2 − tr|R|2

]
. (5.21)

This case imposes only a global constraint

α′

∫

M6

e−Φ
[
tr|F |2

]
= α′

∫

M6

e−Φ
[
tr|R|2

]
. (5.22)

It is known [42] that when this happens the geometry becomes conformally Kähler, so that

the metric and the two-form

g̃ = e−Φg , J̃ = e−ΦJ (5.23)

together define a Kähler manifold. In particular, the Einstein metric in such special cases

can be written as

GE
MN dxMdxN = e−Φ/2 ηµν dxµdxν + eΦ/2 g̃mn dymdyn (5.24)

so the dilaton plays the role of warp factor in a familiar form as in type IIB story with

3-fluxes. For the sake of completeness, we also write the potential V for the squared Dirac

operator in this case,

V =
3

2
eΦ∇2

me−Φ +
1

48
(dH)mnpq Γmnpq . (5.25)

with H carrying no primitive piece.
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6. Summary

We have explored the torsionful geometry of the supersymmetric flux compactification of

heterotic string theory. With the aim at understanding how the low energy gauge sector

arises, and also trying to understand the flux compactification better, we isolated the zero

mode equation of ten-dimensional gaugino field, and showed that zero modes responsible

for gaugino and charged matter fermions obey relatively simple elliptic equations. Along

the way, we found that dH = 0 limit always implies a singular internal manifold, and

thus allows the four-dimensional gaugino to exist despite the formally positive internal

operator. With dH 6= 0 comparable to H2, smooth compactification becomes possible and

we argued why this is a generic behavior by showing that the higher order term α′R2 is

comparable to H2 and cannot be neglected at least for configurations near supersymmetric

compactifications.

As far as counting the matter content of charged fermions is concerned, a lesson we

learned is that the old counting of “generations,” that is, the number of chiral charged mat-

ter fields, cannot be imported to the compactification with flux. Recall that the renowned

formula where the generation is given by the Euler number divided by 2 [10], replies on

the “minimal embedding” and dH = 0. With H flux, singularities compromise naive index

formula, at least until we know how to classify and handle the singularities.

Despite the singularity of the manifold, the shape of the zero mode equations when

dH = 0 is itself suggestive. The primitive part of the torsion supplies a spin-independent

non-negative potential to the squared zero mode equation, and its consequence to the local

form of the gauge zero modes might be worth pursuing, in view of how local physics with

a hierarchical warp factor was important in type IIB compactification.

For more general and non-singular backgrounds dH 6= 0, it remains to understand

how to solve the Bianchi identity and what this, together with torsion, implies for index

densities in general. Here we took the first step by constructing the “Hamiltonian” ∆Q,

relevant for the counting of chiral fermions. We hope to come back to study of the index

densities, in relation with the anomaly condition, in near future.8
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A. Conventions

Conventions for indices are as follows:

M,N, . . . real ten-dimensional coordinate indices,

8See appendix D for comments on existing computations for index densities with torsion.

– 15 –



J
H
E
P
0
7
(
2
0
0
6
)
0
3
0

A,B, . . . real ten-dimensional SO(9, 1) indices,

µ, ν, . . . real four-dimensional coordinate indices,

m,n, . . . real six-dimensional coordinate indices,

a, b, . . . real six-dimensional SO(6) indices.

Antisymmetrization of the indices is defined as

T[M1M2···Mp] =
1

p!

(
TM1M2···Mp − TM2M1···Mp ± permutations

)
. (A.1)

We adopt the following rule about the contraction of tensors:

|Fp|2 =
1

p!
gM1N1gM2N2 · · · gMpNp FM1···MpFN1···Np . (A.2)

The p! cancels the sum over permutations of the indices, so that each independent compo-

nent appears with coefficient 1.

Vielbeins eM
A and their inverses EA

M from the curved spacetime metric gMN and the

tangent space metric ηAB are such that

gMN = ηAB eM
A eN

B , ηAB = gMN EA
M EB

N ,

δN
M = eM

A EA
N , δB

A = EA
M eM

B .

Here are more conventions and identities related to differential forms on a D-dimensional

Riemannian manifold MD [43]:

ωp =
1

p!
ωM1···Mp dxM1 ∧ · · · ∧ dxMp ,

∗ωp =

√
|gD|

p!(D − p)!
εNp+1···ND

M1···Mp ωM1···Mp dxNp+1 ∧ · · · ∧ dxND ,

∗1 =
√

|gD| dx1 ∧ · · · ∧ dxD ,

∗ ∗ ωp = (−1)p(D−p)ωp ,

gD εM1···Mp
Np+1···ND

· εM1···Mp

Lp+1···LD = p!(D − p)! · δLp+1

[Np+1
· · · δLD

ND ] ,

where εM1···MD
and εM1···MD are tensor densities.

Finally we close with a useful identity among the Dirac matrices, which is needed for

computation of − /D2.

ΓA1A2···ApΓB1B2···Bq

=

min(p,q)∑

k=0

(−1)
1

2
k(2p−k−1) p!q!

(p − k)!(q − k)!k!
δ
[A1

[B1
· · · δAk

Bk
Γ

Ak+1···Ap]
Bk+1···Bq ] .

(A.3)

where

ΓA1···Ap =
1

p!

(
ΓA1ΓA2 · · ·ΓAp − ΓA2ΓA1 · · ·ΓAp ± permutations

)
. (A.4)
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B. Supersymmetry and an SU(3)-structure

Here we summarize the supersymmetry variations of fermions with zero-th order in α′ (the

higher order corrections are shown in [23]):

δψM =

{
∂M +

1

4
ω−M

AB ΓAB

}
ε , (B.1a)

δλ = −1

4

{
ΓM∇MΦ − 1

6
HMNP ΓMNP

}
ε , (B.1b)

δχ = −1

4
FMNΓMNε . (B.1c)

B.1 Invariant forms

In the heterotic supergravity, we assign the chiralities of fermions with the followings:

Γ(10)ψM = +ψM , Γ(10)χ = +χ , Γ(10)λ = −λ , Γ(10)ε = +ε . (B.2)

The ten-dimensional supersymmetry parameter ε, which is a Majorana-Weyl spinor, de-

composes into two kinds of Weyl spinors under Spin(9, 1) → Spin(3, 1) × SU(4)

ε = f · ξ+ ⊗ η+ + f∗ · ξ− ⊗ η− , (B.3)

where the complex conjugates of these two Weyl spinors are assigned such as (ξ+)∗ = ξ−
and (η+)∗ = η−, respectively; f and f∗ are complex scale factors depending on coordinates.

In this paper we fix these coefficients to 1. The Weyl spinors on the six-manifold M6 define

an invariant two-form J and an invariant three-form Ω:

∇(−)
m η± = 0 , ∇(−)

m Jab = ∇(−)
m Ωabc = 0 ,

η†±η± = 1 , Jab = −iη†+Γabη+ , Ωabc = ηT
+Γabcη+ .

Via the Fierz identity on the Weyl spinors in six-dimensional space, one can identify Jm
n

with the almost complex structure and finds that the metric on the six-dimensional space

becomes hermitian with respect to this almost complex structure:

Jm
p Jp

n = −δm
n , Jm

p Jn
q gpq = gmn . (B.4)

Since there are no invariant five-forms and there should be one volume form on the SU(3)-

structure manifold, these invariant forms satisfy the following equations

J ∧ Ω = 0 , J ∧ J ∧ J =
3i

4
Ω ∧ Ω = 3!

√
|g| dy1 ∧ · · · ∧ dy6 . (B.5)

This Ω is not a holomorphic three-form, however. See next subsection.

B.2 Geometry of supersymmetric compactifications

Supersymmetry variations on the six-manifold M6 restrict the geometrical conditions via

relations among the fields {Φ,H, F} and the geometrical quantities {J,Ω}. The most

typical conditions are given by

0 = Rab
mn(ω−)Jab (from δψm = 0) , (B.6a)
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J[m
q∇|q|Jnp] = −2J[m

qJn
rHp]qr (from δψm = 0) , (B.6b)

Nmnp = Hmnp − 3J[m
qJn

rHp]qr (from δψm = 0) , (B.6c)

Nmnp = 0 (from δλ = 0) , (B.6d)

HmnpJ
np = 2Jm

q∇qΦ (from δλ = 0) , (B.6e)

0 = FmnJmn (from δχ = 0) . (B.6f)

By using these we further obtain various simple conditions among the fields and geometrical

quantities in terms of the differential forms [33]:

0 = −2dΦ + θ , (B.7a)

H = T (B) = −1

2
∗ e+2Φd(e−2ΦJ) , (B.7b)

0 = d(e−2Φ ∗ J) =
1

2
d(e−2ΦJ ∧ J) , (B.7c)

0 = d(e−2ΦΩ) , (B.7d)

which implies that there is a holomorphic three-form

∂
(
e−2ΦΩ

)
= 0 . (B.7e)

Some of quantities above are well-known mathematical objects for complex geometry. In

addition to the familiar Nijenhuis tensor Nmn
p, the Lee-form θ and the Bismut torsion

T
(B)
mnp [34] are defined as

θ ≡ J ydJ =
3

2
Jmn∇[mJnp] dyp , (B.8a)

Nmn
p ≡ Jm

q∇[qJn]
p − Jn

q∇[qJm]
p , (B.8b)

T (B)
mnp ≡ 3

2
Jm

qJn
rJp

s∇[sJqr] = −3

2
J[m

q∇|q|Jnp] . (B.8c)

A useful identity for dH can be found as follows. Let us decompose H-flux on the internal

space into the primitive part H0 and the non-primitive part like

H = H0 +
1

4
J ∧ K , J yH0 = J ∧ H0 = 0 , (B.9)

where Km ≡ HmnpJ
np = 2Jm

n∇nΦ given by the supersymmetry variation (B.6e). By

using the equations (B.7b), (B.7c) and J ∧ H0 = 0, we evaluate the followings:

J ∧ dH = e2Φd(e−2ΦJ ∧ H) − e2Φd(e−2ΦJ) ∧ H , (B.10a)

e2Φ(de−2ΦJ) ∧ H = −2H ∧ ∗H = (∗1) 1

3
HmnpH

mnp , (B.10b)

e2Φd(e−2ΦJ ∧ H) =
1

4
e2Φd(e−2ΦJ ∧ J ∧ K)

=
1

2
dK ∧ ∗J = − ∗

(
∇2

mΦ − 2(∇mΦ)2
)

.

(B.10c)

Thus we obtain an equation among the invariant two-form J , the H-flux and the dilaton

Φ such as

∗(J ∧ dH) = −∇2
mΦ + 2(∇mΦ)2 − 1

3
HmnpH

mnp . (B.11)
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B.3 Ricci scalar curvature

Here we summarize the computation that gives (2.19). Starting with

0 = Rab
mn(ω−)Jmn , (B.12)

where ω− = ω − H, so that

Rpmqn(ω−) = Rpmqn(ω) −∇qHpmn + ∇nHpmq + HprqH
r
mn − HprnHr

mq . (B.13)

Contracting with the complex structure one more time,

0 = Rpqmn(ω−)JpqJmn = 3Rp[qmn](ω−)JpqJmn + 2RpmqnJpqJmn , (B.14)

The first piece is purely a torsion

3Rp[qmn](ω−)JpqJmn = 6(−∇[mH|p|qn] + Hpr[mHr
qn])J

pqJmn

= −6JpqJmn∇mHpqn + 2JpqJmnHpqrHmn
r

+ 4JpqJmnHprmHr
qn ,

(B.15)

while the second is the Ricci scalar with torsion

2Rpmqn(ω−)JpqJmn = 2Rpmqn(ω−)gpqgmn

= 2 (R(ω) − HmnpH
mnp) .

(B.16)

Relations between J , H and the dilaton can be used to show

JpqJmnHprmHr
qn = −1

3
HmnpH

mnp , (B.17a)

JpqJmnHpqrHmn
r = 4(∇mΦ)2 , (B.17b)

JpqJmn∇mHpqn = −2∇2
mΦ − 2

3
HmnpH

mnp + 4(∇mΦ)2 . (B.17c)

Combining these, we find

1

2
Rpqmn(ω−)JpqJmn = −3

(
−2∇2

mΦ − 2

3
HmnpH

mnp + 4(∇mΦ)2
)

+ 4(∇mΦ)2 − 2

3
HmnpH

mnp +
(
R(ω) − HmnpH

mnp
)

.

(B.18)

Thus, the supersymmetry demands the scalar curvature of the internal manifold to satisfy

0 = R(ω) +
1

3
HmnpH

mnp + 6∇2
mΦ − 8(∇mΦ)2 . (B.19)

C. Equations of motion

Equations of motion for Φ, GMN , BMN and χ in string frame are given as follows:

0 = −R(ω) +
1

3
HMNP HMNP + 4(∇MΦ)2 − 4∇2

MΦ −Z , (C.1a)
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0 = RMN (ω) − HMPQHN
PQ + 2∇M∇NΦ

− 1

2
GMN

[
R(ω) − 1

3
HPQRHPQR − 4(∇P Φ)2 + 4∇2

P Φ + Z
]

− 2α′
[
tr(FMP FN

P ) − tr{RMP (ω+)RN
P (ω+)}

]

− 2α′e2Φ
[
2∇P∇Q

(+)

{
e−2ΦRMPNQ(ω+)

}
−∇Q

(+)

{
e−2ΦRMPQR(ω+)

}
HN

PR

− 2∇P
{
e−2ΦRMPQR(ω+)HN

QR
}
− 2e−2ΦRMPQR(ω+)HN

PSHS
QR

−∇P∇Q
(+)

{
e−2ΦRMNPQ(ω+)

}
+ ∇P

{
e−2ΦRMNQR(ω+)HP

QR
}]

,

(C.1b)

0 = ∇M (e−2ΦHMNP ) , (C.1c)

0 = /D(ω,A)χ − 1

12
ΓMNP χHMNP

− ΓMχ∇MΦ +
3

2
ΓMΓNP (FNP + F̂NP )

(
ψM +

2

3
ΓMλ

)
, (C.1d)

where Z ≡ −α′
[
tr(FMNFMN ) − tr{RMN (ω+)RMN (ω+)}

]
. (C.1e)

Notice that we defined the trace with respect to the former two indices of the curvature

tensors such as tr{RMN (ω+)RMN (ω+)} = −RPQMN(ω+)RPQMN(ω+). Via the anomaly

cancellation in ten dimensions, the Bianchi identity of H-flux is given by (see [37, 23])

dH = α′
[
tr{R(ω+) ∧ R(ω+)} − tr(F ∧ F )

]
. (C.2)

D. Index densities with torsion

It is often stated that introduction of torsion does not affect index. This is natural since

the torsion piece, as far as the classical geometry goes, can be thought of a continuous

deformation on the Dirac operator, under which an index of Fredholm operator should be

invariant.

We should not be mislead to expect from this mathematical statement that flux has no

effect in the fermion counting in string compactification. Fluxes in string compactification

can affect the fermion counting in two qualitative ways. One is to modify the Dirac equation

so that fermions of different kind (or chirality) get mixed up and usual chirality operator

cannot be used to define an index. Another, which is relevant for the gauge sector fermions

in our heterotic theory, is the fact that the geometry can backreact to the flux in some

essential way. This was the case for flux compactification with dH = 0, as we saw above.

With these said, it is still curious that index density formula for an arbitrary smooth

manifold with torsion seem not available. The closest work to this can be found in [36],

which computes the Atiyah-Singer index densities when the manifold has a completely anti-

symmetric torsion which is closed. According to this work, the Atiyah-Singer index density

for /D(ω̂, A) with dH = 0 would be given by the usual characteristic polynomial [36, 44]

A(R+) ∧ ch(F ) (D.1)
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with A-genus A and the Chern character ch of the gauge bundle. Note that in place of the

curvature two-form, we have the curvature two-form R+ of the connection ω+ = ω + H,

rather than R−.

Assuming that the path integral approach taken there is accurate, one may understand

switching as follows. Recall that the index density formula is obtained by using the identity

index /D ≡ lim
β→∞

(
e−β∆

6∏

a=1

Γa

)
= lim

β→0

(
e−β∆

6∏

a=1

Γa

)
, (D.2)

which holds provided that the spectrum of /D is discrete. Realizing ∆ as a Hamiltonian of a

supersymmetric quantum mechanics with supercharge /D, one obtains the metric-dependent

part of the index density from one-loop determinant of bosonic oscillation. The curvature

part of the index densities are built with monomials like

tr
{
Rabm

n(ω−) ea ∧ eb
}k

(D.3)

with vielbein one-forms ea. Here the trace is taken over m and n indices, the coordinate

indices. Note that this is opposite of usual invariant density where the Lie algebra indices

a and b are traced over. Without torsion, this flip does not matter since the two sets of

indices are interchangeable. With torsion, instead, we have

Rmnpq(ω+) = Rpqmn(ω−) + (dH)pqmn = Rpqmn(ω−) . (D.4)

Thus, the formal computation yields an invariant polynomial of type

tr {R(ω+ = ω + H)}2k (D.5)

provided that dH = 0.

If the manifold were smooth and compact, this would have demonstrated that the

index is independent of H. To see this, let us define an SO-valued torsion one-form as

T a
b = Hm

a
b dym . (D.6)

It can be seen easily that

tr {R(ω+)}2k = tr{R(ω)}2k + d

(
2k

∫ 1

0
dx tr

{
T ∧ R(ω + xT )2k−1

})
, (D.7)

which shows that the torsion contribution will integrate to zero on a compact and smooth

manifold.

With dH 6= 0, the quantum mechanics is somewhat modified because of the quartic

terms that survives in ∆, in the form ∼ (dH)abcdΓ
abcd [45, 46]. Naive extension of Mavro-

matos’ computation is not difficult to carry out, but it is not clear whether the final formula

makes sense. dH can enter in two distinct ways: First is a further shift of the curvature

tensor R(ω+) to R(ω+) − dH. Note that this is because that curvature is actually R(ω−)

with the coordinate indices and the Lie-algebra indices flipped. Also dH makes appearance

as a factor of dH/β outside the trace, where all 4 indices should be regarded as coordinate
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indices. Contribution like the latter must disappear upon integration on the six-manifold,

yet explicit check of this has not been performed. In fact, it is not clear if the resulting

formula following this line of derivation makes any sense as a topological density.

One reason for such difficulties must be due to the subtlety in the regularization of the

path integral approach. Somewhat formal manipulation, originally due to [47, 48], seems

to fail for manifold with torsion. In literature, rigorous computations of this kind exists

only in the context of four-dimensional spacetime, largely in connection with axial anomaly

in quantum field theory. See [49] for detailed and rigorous computation that demonstrates

that torsion contributes a total derivative term only in four-dimensional case. For rigorous

computation of index densities, a heat-kernel approach [50] would be more desirable which

is not yet available for six and higher dimensions.
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